
March 2012
Number 25

 1 Know How...
 Put Event Binding to Work, Part 1
 Tamar E. Granor, PhD

 8 Deep Dive
Make Your Menus Pop

 Doug Hennig

 13 VFPX
 GoFish 4
 Rick Schummer

 21 SQLite
 Getting started with Client-Server
 with SQLite
 Whil Hentzen

Put Event
Binding to
Work, Part 1
The BindEvent() function lets you make
your applications smarter and easier to
use.

Tamar E. Granor, Ph.D.

At fi rst glance, the BindEvent() function may seem
unnecessary. After all, why bind to an event when
you can just write code in the event's method?
When the BindEvent() function was added in VFP
8, I had a hard time understanding why I should
care. Unlike the EventHandler() function that
let my code respond to events for other servers,
BindEvent() worked only for events fi red in VFP
code. Why would I need to bind to such events?
Why couldn't I just put the necessary code into the
corresponding event methods?

Fairly quickly, I realized that BindEvent()
would be quite useful when dealing with black-box
code that you couldn't modify or subclass (such as
third-party tools). But it took a lot longer before I
really saw the potential of BindEvent() and started
using it extensively.

In the article and the next, I'll show how event
binding works, and explore some of the ways it has
improved applications I developed.

The downloads for these articles include a
(simple) application that demonstrates many of the
techniques discussed. The application is designed
for a lending library, to handle books being
checked out and checked in, tracking members, and

maintaining the catalog of books. This application
was originally created as a demonstration of a
variety of user interface practices; as a result, some
of its UI is a little different than standard Windows
applications. In particular, it was designed to use
bar codes to specify a member or a book, even
when no forms are open. To simulate scanned
barcodes, type the desired value with an asterisk
("*") on each side. (Some barcode standards, such as
Code 39, use an asterisk on each size as a start/stop
code.) For example, to specify the member whose
barcode is "7160769048", you'd type "*7160769048*"
(without the quotes). However, in a barcode fi eld,
you can omit the asterisks.

Throughout this series, I'll use the terms "top-
level" and "base" interchangeably to refer to the
fi rst-level subclasses of the VFP base classes.

Page 2 FoxRockX March 2012

BindEvent() background
Before we dig into examples, let's start with a little
theory and terminology. The BindEvent() function
creates a connection between methods of two
objects. Specifically, an event of one object, the
event source, is handled by a method, the delegate,
of another object, the event handler. The syntax
for BindEvent() is shown in Listing 1. It says that
whenever method cMethod of oEventSource fires,
method cDelegateMethod of oEventHandler will
also run.

Listing 1. The BindEvent() function lets you bind one method
to another.
BINDEVENT(oEventSource, cMethod, ;
 oEventHandler, cDelegateMethod, ;
 nFlags)

By default, the delegate method runs first, but
you can change that with the nFlags parameter.
That is, code in both methods runs, but you can
determine the order.

nFlags also controls whether the binding only
applies when cMethod fires as an event, or also
when cMethod is called programmatically.

It's worth pointing out that VFP has a built-in
example of event binding (though it doesn't use
BindEvent()). When you set the KeyPreview prop-
erty of a form to .T., every time a key is pressed in
any control on the form, the form's KeyPress method
fires, followed by the KeyPress method of the con-
trol itself. It's as if you'd issued BindEvent(oControl,
"KeyPress", ThisForm, "KeyPress") for every con-
trol on the form.

The example Library application uses this ability
to handle bar codes. All of the data entry forms are
derived from a class (frmBarCodeEnabled) that has
KeyPreview set to .T. and includes code in KeyPress
to determine whether the data that was just entered
is a barcode.

VFP has three additional functions that deal
with event binding. UnbindEvents() lets you turn
off event binding. You can turn off all bindings
for a particular object or only a specific binding.
Bindings are automatically turned off when either
object goes out of scope, so you only need to use
UnbindEvents() if you need to remove a binding
while both objects are still available.

AEvents() lets you find out what events are
currently bound. It's most useful in the delegate
method to find out what object and event triggered
the method.

The last event binding function is RaiseEvent();
it lets you fire an event programmatically. It differs
from just calling the event method in that it ensures
that delegate methods are called, no matter which
parameters you specified in BindEvent().

Binding to Windows events
In VFP 9, you can also bind to Windows events,
such as switching applications, creating a file, or
changing the color scheme. The syntax in that case
is a little different; among other things, it lets you
specify the window for which you want to capture
the specified Windows event. Listing 2 shows the
structure of the call.

Listing 2. When binding to Windows events, the parameters for
BindEvent() change.
BindEvent(hWnd | 0, nMessage, oEventHandler,
 cDelegateMethod [, nFlags])

The official Windows term for these events
is "messages." There are dozens of messages
you can respond to; each has a unique numeric
code. Unfortunately, the list is not in the VFP
documentation. As of this writing, I can't find the
list in MSDN, but this site seems to have a thorough
list (though it doesn't indicate what action fires
each message:
http://wiki.winehq.org/List_Of_Windows_Messages.

Pass the window handle (hWnd) of the window
whose messages you want to capture, or pass 0 to
capture all Windows messages. In my experience,
most of the time, passing _VFP.hWnd lets me
capture events in VFP windows. The event handler
and delegate method parameters are the same as
when binding VFP events. Although you can pass
it without error, the nFlags parameter is ignored
when binding a Windows message.

In the delegate method, if you want the Win-
dows event to occur as usual, you need to include
code to pass it on. I'll show the code you need in my
next article.

Putting BindEvent() to work
Now that we've covered the basics, let's move on
to some examples that show how BindEvent() can
improve your applications.

Managing Context Menus
The first place that the real utility of event binding
became clear to me was for handling context
menus (AKA right-click menus). Although you can
manage these at the control level, I generally find
that I want to do so at the form level. That is, I want
to use a single form method to evaluate the current
situation and populate and show a context menu. I
do this by issuing the command in Listing 3 in the
Init method of all my top-level control classes.

Listing 3. Putting this command in the Init of all my control
classes gives me central handling of right-clicks.
BINDEVENT(This, "RightClick", ;
 ThisForm, "RightClick")

March 2012 FoxRockX Page 3

It's reasonable to ask why this is better than
putting ThisForm.RightClick in the RightClick
method of each top-level control class. The main
reason is that with event binding, I can find out in
the form's RightClick method which control was
right-clicked; I don't have to pass the control as a
parameter and remember to receive the parameter
in the form's RightClick.

As for building the shortcut menus
themselves, my approach is based on one that
Doug Hennig published in the September,
1997 issue of FoxTalk. My base form class's
RightClick method calls a custom ShowMenu
method. That method determines the caller,
creates a popup menu, calls a custom method
(named ShortcutMenu, it's abstract in the
base form class) that fills the pop-up based on
who called it and other factors, and activates
the popup. The code I use is shown in Listing
4.

Listing 4. The custom ShowMenu method of my base
form class sets up and displays a context menu.
LOCAL aEventInfo[1], oObject

* Find out who called
IF AEVENTS(aEventInfo, 0) = 0
 * Called from form
 oObject = This
ELSE
 oObject = aEventInfo[1]
ENDIF

* Define menu
RELEASE POPUPS ShortCut
DEFINE POPUP ShortCut ;
 FROM MROW(), MCOL() SHORTCUT
ON SELECTION POPUP ShortCut ;
 WAIT WINDOW "Under construction.";
 NOWAIT

* Populate menu
This.ShortcutMenu(m.oObject)

* Activate menu
IF CNTBAR("ShortCut") > 0
 ACTIVATE POPUP Shortcut
ENDIF

RELEASE POPUPS ShortCut
RETURN

ShowMenu uses AEvents() to identify
the control on which the user right-clicked;
when you pass 0 as the second parameter
to AEvents(), it fills the specified array (its
first parameter) with information about the
binding that led to the current routine; the
first element of the array is the event source.
If the function returns 0, it means that this
code wasn't triggered by a bound event; in
that case, we know the user right-clicked on
the form itself.

For a particular form, all I have to do
is put code in the ShortcutMenu method
to create the appropriate menu bars, based

on the object it receives as a parameter. Listing 5
shows the code in the ShortcutMenu method of the
CheckOut form in the Library application. Figure
1 shows the context menu when there's a member
displayed in the form and you click anywhere
except over a book in the grid; Figure 2 shows the
context menu when you right-click over a book in
the grid.

Figure 2. When you right-click over a book in the list to be checked out, you
get the option of viewing that book in the catalog.

Figure 1. When there's a member showing in the Checkout form,
right-clicking in most places offers a single choice: Show this mem-
ber's record.

Page 4 FoxRockX March 2012

Listing 5. Binding all right-clicks to the form lets you centralize
handling of shortcut menus.
LPARAMETERS oObject
* oObject = object actually right-clicked

* Build the shortcut menu for this form

LOCAL nNextBar
nNextBar = 1

* If we have a borrower, provide access to
* borrower form

IF NOT EMPTY(ThisForm.cCurrentMemberNum)
 DEFINE BAR m.nNextBar OF Shortcut ;
 PROMPT "Show this member's record"
 LOCAL cMemberNum
 cMemberNum = ThisForm.cCurrentMemberNum
 ON SELECTION BAR m.nNextBar OF Shortcut ;
 DO FORM Borrowers with "&cMemberNum"
 nNextBar = m.nNextBar + 1
ENDIF

* If we're over a book in the grid, offer to
* open the catalog pointing to it.
* If the control that got us here is the grid
* itself, we're not over a record.
LOCAL lInGrid, oCheckObj, cBookBarCode

lInGrid = .F.
IF NOT INLIST(UPPER(oObject.BaseClass), ;
 "GRID", "FORM")
 oCheckObj = m.oObject
 DO WHILE NOT m.lInGrid AND ;
 NOT ISNULL(oCheckObj.Parent)
 oCheckObj = oCheckObj.Parent

 DO CASE
 CASE UPPER(oCheckObj.BaseClass) = "GRID"
 lInGrid = .T.
 CASE UPPER(oCheckObj.BaseClass) = "FORM"
 * If we get to a form, we're not in a
 * grid. Get out of here.
 EXIT
 ENDCASE
 ENDDO
ENDIF

IF m.lInGrid
 DEFINE BAR m.nNextBar OF Shortcut ;
 PROMPT "Show book in catalog"
 cBookBarCode = CheckOutList.cBarCode
 ON SELECTION BAR m.nNextBar OF Shortcut ;
 DO FORM Catalog ;
 WITH "C", "&cBookBarCode"
ENDIF
RETURN

Handling events inside a container
It's not unusual to want all the controls inside a
container to delegate behavior to the container.
This is especially true when using a container to
represent graphical objects as in Figure 3 (which
comes from a client application), where many
layers of containers are used to represent a physical
object. Actions need to take place at the level of
the physical object, not the controls from which
it's built. For example, each of the boxes under the
"Interface n" labels is a container object, containing
a label and four additional containers. (In fact,
though the figure doesn't show it, the number of

Figure 3. In this form, containers contain other containers, as well as labels, shapes, and other controls. Often, a click or doubleclick
needs to be interpreted in the context of the container, not the control that receives the action.

March 2012 FoxRockX Page 5

containers inside can be 2, 4 or 8.) Each of those
additional containers contains a label. In this
application, a double-click anywhere inside one of
the large boxes should open another form. Event
binding makes this straightforward.

My top-level container class, cntBase, has
custom properties, lBindClick, lBindDblClick and
lBindMouseDown, as well as custom methods
BindClick, BindDblClick and BindMouseDown.
The three methods are all quite similar. Listing 6
shows the BindClick method.

Listing 6. The BindClick method of the top-level container
class drills down through all the objects in the container and
binds their Click methods to the container's Click method. It
uses recursion to drill down.
LPARAMETERS oContainer

* Bind all contents to start drag
FOR EACH oObject IN oContainer.Objects ;
 FOXOBJECT
 IF PEMSTATUS(oObject, "Click", 5)
 BINDEVENT(oObject, "Click", ;
 This, "Click")
 ENDIF

 IF PEMSTATUS(oObject, "Objects", 5)
 This.BindClick(m.oObject)
 ENDIF
ENDFOR

The Init method includes the code in Listing 7,
which uses the properties to determine whether to
call the methods and set up binding for each of the
three events (Click, DblClick,
MouseDown).

Listing 7. This code in the top-level
container class's Init method binds the
Click, DblClick and MouseDown meth-
ods of controls inside the container
to the container, if the relevant flags
are set.
IF This.lBindDblClick
 This.BindDblClick(This)
ENDIF

IF This.lBindMouseDown
 This.BindMouseDown(This)
ENDIF

IF This.lBindClick
 This.BindClick(This)
ENDIF

With this structure in place,
for any given container, all you
have to do is set the lBindClick,
lBindDblClick and lBindMouse-
Down properties to determine
which actions should propagate
from the contained controls to the
container itself.

MouseDown is included here because it's the
easiest event for triggering drag-and-drop opera-
tions. If drag-and-drop is implemented, binding
MouseDown allows the user to click on any object
within a container to drag the entire container.

In the Library application, the Copy tab of the
right pane of the Catalog form has all of its controls
in a single container. When a copy of a book has
been selected, you can drag from that container to
either the CheckIn or CheckOut form to add the
book to the check-in or check-out list respectively.
I don't want the user to have to worry about
where he is on the Copy page, so the container,
cntCopyInformation, has lBindMouseDown set to
.T., thus MouseDown on any object in the container
fires the container's MouseDown method, which
contains the code in Listing 8 to start dragging.
Figure 4 shows a drag in progress.

Listing 8. This code in the MouseDown event of
cntCopyInformation fires when the user clicks anywhere on the
container because the MouseDown event of all the contained
objects is bound to the container's MouseDown.
LPARAMETERS nButton, nShift, nXCoord, nYCoord

IF NOT EMPTY(This.txtBarCode.Value)
 This.OLEDrag(.T.)
ENDIF

There's code in both the container and the
forms on which you can drop to handle the drag-
and-drop operation, but it's not terribly relevant to
the binding.

Figure 4. The Copy page of the catalog holds a container identifying this copy of the specified
book. You can drag from the container whether you're over the container itself or any of its
contained controls.

Page 6 FoxRockX March 2012

Tracking user changes
Really well-behaved applications enable and dis-
able controls dynamically, taking user activity into
account. One very common feature is to keep the
Save button disabled until the user actually chang-
es a record. To do that, of course, you need a way of
knowing that the user has changed data.

In the Library application, the top-level class
for each control that allows data to change (such
as editbox and textbox) has a custom property,
lNoteChange. When the property is .T., it indicates
that a change to this particular control's value should
be noted by the form, and appropriate action taken.
In addition, each control has a custom AnyChange
method and code in both InteractiveChange and
ProgrammaticChange that raises the AnyChange
event; that code is shown in Listing 9.

Listing 9. To be able to track user changes closely, add a
custom AnyChange method to each control class, and put this
code in InteractiveChange and ProgrammaticChange.
RAISEEVENT(This,"AnyChange")

The top-level form class also has a custom
AnyChange method, as well as one called
BindControlEvents. BindControlEvents recursively
binds the control-level AnyChange method to the
form-level AnyChange method, as in Listing 10.

Listing 10. This code binds changes in controls to a form
method, so the form can react.
* Bind events of controls to events of the
* form as appropriate
LPARAMETERS toControl

LOCAL oControl

FOR EACH oControl IN toControl.Objects
 IF PEMSTATUS(oControl, "lNoteChange", 5) ;
 AND oControl.lNoteChange
 BINDEVENT(oControl, "AnyChange", ;
 This, "AnyChange")
 ENDIF

 IF PEMSTATUS(oControl, "Objects", 5)
 This.BindControlEvents(oControl)
 ENDIF

ENDFOR

The base form class has a custom property,
lNoteUserChanges, that determines whether
BindControlEvents is called in the form's Init
method. It's set to .F. in the base class, but to .T.
in the frmBizObjAware class that's used for data-
aware forms.

The base form class's AnyChange method sets
a flag and calls a custom method, UpdateEnabled,
to enable and disable controls and menu items
appropriately; the code in AnyChange is shown in
Listing 11.

Listing 11. This code in the form's AnyChange method
responds to user changes.
This.lDataChanged = .T.
This.UpdateEnabled(.T.)

Finally, in the base form class, UpdateEnabled,
shown in Listing 12, ensures that menu Skip For
conditions get re-evaluated after a change. It also
calls an abstract method you can use in individual
forms to deal with specific controls that need to be
enabled or disabled.

Listing 12. To make sure menus and toolbars get enabled and
disabled appropriately, the form's UpdateEnabled class reacti-
vates menus.
LPARAMETERS lForce

* Ensure that skip for conditions get re-
* evaluated.
ACTIVATE MENU MainMenu NOWAIT

IF NOT EMPTY(This.cMenuName)
 ACTIVATE MENU (This.cMenuName) NOWAIT
ENDIF

This.FormUpdateEnabled(m.lForce)

The toolbar controls use event binding to pig-
gyback onto the menu to determine whether they
should be enabled or disabled. The Init method
of tbrBase (the base toolbar class) calls the custom
BindToActiveForm method, shown in Listing 13,
which binds the custom UpdateEnabled method
of the toolbar to the calling form's UpdateEnabled
method. So the toolbar has its controls updated
whenever the form and menu are updated.

Listing 13. This method, BindToActiveForm, ensures that tool-
bar controls get updated when form controls and the menu do.
LPARAMETERS oForm

* Bind updating of controls to updating on
* active form

DO CASE
CASE VARTYPE(m.oForm) = "O" AND ;
 NOT ISNULL(m.oForm)
 BINDEVENT(m.oForm, "UpdateEnabled", ;
 This, "UpdateEnabled", 1)

CASE VARTYPE(goApp) = "O" AND ;
 MethodExists(goApp.oActiveForm, ;
 "UpdateEnabled")
 BINDEVENT(goApp.oActiveForm, ;
 "UpdateEnabled", ;
 This, "UpdateEnabled", 1)

ENDCASE

The toolbar's UpdateEnabled method relies on
the controls themselves to know the condition for
enabling or disabling. It just loops through all the
controls and calls whatever code the control points
to. The method is shown in Listing 14.

March 2012 FoxRockX Page 7

Listing 14. The toolbar's UpdateEnabled method tells each
control to evaluate its own Skip For condition.
* Update the buttons on the toolbar to reflect
* the current state of affairs. Each button
* should have a cSkipFor expression to use for
* this. If not, leave it as is.
* Use TRY-CATCH to avoid problems in special
* cases (such as the app is closing)

FOR EACH oControl IN THIS.Controls
 IF TYPE("oControl.cSkipFor")="C"
 TRY
 oControl.Enabled = ;
 NOT EVALUATE(oControl.cSkipFor)
 CATCH
 * Nothing to do
 ENDTRY
 ENDIF
ENDFOR

Because several forms may share the same
toolbar, it's not enough to bind the toolbar to the
form in the Init. We need to change the binding as the
user activates different forms. The application object
tracks the active form in the application through
another use of BindEvent(); a pair of application
methods are called when the active form changes.
The Activate method of each form is bound to the
application object's SetActiveForm method, while
the Deactivate method of each form is bound to
the application object's ClearActiveForm method.
The form's Init method calls the application object's
BindForm method to set this up. BindForm is shown
in Listing 15. SetActiveForm and ClearActiveForm
simply change an application property to always
point to the active form.

Listing 15. The application object's BindForm method lets the
application keep track of what form is currently active.
PROCEDURE BindForm(oForm)
* Bind a form's events as needed

BINDEVENT(oForm, "Activate", ;
 This, "SetActiveForm", 1)
BINDEVENT(oForm, "Deactivate", ;
 This, "ClearActiveForm")
IF PEMSTATUS(oForm, "GotBarCode",5)
 BINDEVENT(oForm, "GotBarCode", ;
 This, "ProcessBarCode")
ENDIF

RETURN

The Init method of tbrBase ties into this model by
binding SetActiveForm and ClearActiveForm to the
toolbar's BindToActiveForm and UnbindActiveForm
methods. The toolbar's Init method is shown in
Listing 16, while the UnbindActiveForm method is
in Listing 17.

Listing 16. The toolbar class's Init method uses BindEvent()
to ensure that the toolbar controls get bound and unbound
appropriately.
LPARAMETERS oCallingForm

* Reset enable/disable of controls when active
* form changes
IF MethodExists(goApp, "ClearActiveForm")
 * Disconnect from old form
 BINDEVENT(goApp, "ClearActiveForm", ;
 This,"UnbindActiveForm",1)
ENDIF
IF MethodExists(goApp, "SetActiveForm")
 * Connect to new form
 BINDEVENT(goApp, "SetActiveForm", ;
 This,"BindToActiveForm",1)
ENDIF

* Bind to current form
IF VARTYPE(m.oCallingForm) = "O" AND ;
 NOT ISNULL(m.oCallingForm)
 This.BindToActiveForm(m.oCallingForm)
ENDIF

Listing 17. This toolbar method, UnbindActiveForm, is called
when the form to which toolbar controls are currently bound is
deactivated. It releases the bindings, so that the toolbar can, if
appropriate, be bound to another form.
* Unbind from active form.
IF VARTYPE("goApp") = "O" AND ;
 VARTYPE("goApp.oActiveForm") = "O" AND ;
 PEMSTATUS(goApp.oActiveForm, ;
 "UpdateEnabled", 5)
 UNBINDEVENTS(goApp.oActiveForm, ;
 "UpdateEnabled", ;
 This, "UpdateEnabled")
ENDIF

This whole sequence probably seems quite con-
voluted, but in fact, it provides a virtually invisible
mechanism for keeping menu items and toolbar
controls properly enabled and disabled.

More to come
In my next article, we'll look at some additional
uses for BindEvent, including one that binds to a
Windows event.

Author Profile
Tamar E. Granor, Ph.D. is the owner of Tomorrow’s
Solutions, LLC. She has developed and enhanced
numerous Visual FoxPro applications for businesses
and other organizations. Tamar is author or co-author
of nearly a dozen books including the award winning
Hacker’s Guide to Visual FoxPro, Microsoft Office
Automation with VisualFoxPro and Taming Visual
FoxPro’s SQL. Her latest collaboration is Making
Sense of Sedna and SP2. Her books are available
from Hentzenwerke Publishing (www.hentzenwerke.
com). Tamar was a Microsoft Support Most Valuable
Professional from the program's inception in 1993
until 2011. She is one of the organizers of the annual
Southwest Fox conference. In 2007, Tamar received the
Visual FoxPro Community Lifetime Achievement Award.
You can reach her at tamar@thegranors.com or through
www.tomorrowssolutionsllc.com.

